Skip to main content
Version: Next

Microsoft SQL Server

Certified

Important Capabilities

CapabilityStatusNotes
Asset ContainersEnabled by default
ClassificationOptionally enabled via classification.enabled
Data ProfilingOptionally enabled via configuration
DescriptionsEnabled by default
Detect Deleted EntitiesEnabled via stateful ingestion
DomainsSupported via the domain config field
Platform InstanceEnabled by default
Schema MetadataEnabled by default

This plugin extracts the following:

  • Metadata for databases, schemas, views and tables
  • Column types associated with each table/view
  • Table, row, and column statistics via optional SQL profiling We have two options for the underlying library used to connect to SQL Server: (1) python-tds and (2) pyodbc. The TDS library is pure Python and hence easier to install. If you do use pyodbc, make sure to change the source type from mssql to mssql-odbc so that we pull in the right set of dependencies. This will be needed in most cases where encryption is required, such as managed SQL Server services in Azure.

Prerequisites

If you want to ingest MSSQL Jobs and stored procedures (with code) the user credentials needs the proper privileges.

Script for granting the privileges:

USE MSDB
GRANT SELECT ON OBJECT::msdb.dbo.sysjobsteps TO 'USERNAME'
GRANT SELECT ON OBJECT::msdb.dbo.sysjobs TO 'USERNAME'

USE 'DATA_DB_NAME'
GRANT VIEW DEFINITION TO 'USERNAME'
GRANT SELECT ON OBJECT::sys.sql_expression_dependencies TO 'USERNAME'

Extended Properties

Feature Overview

What are Extended Properties?

Extended Properties in MSSQL allow users to add custom metadata to database objects such as tables, columns, and schemas. This feature helps in storing additional descriptive information directly within the database.

Why Use Extended Properties?
  • Enhanced Metadata Management: Store additional context about your data directly within the database.
  • Improved Data Governance: Helps in better understanding and managing your data assets.
  • Custom Annotations: Allows for annotations that can be specific to your organizational needs.
General Purpose

Ingest information from MSSQL's extended properties into DataHub and display it in the appropriate places in DataHub.

Goal

Ingest additional metadata properties to enrich the data models and provide more comprehensive context. Implementation Details

This feature works with tables and views. The retrieved properties are mapped to the appropriate DataHub fields: Description, Tags, Owners and Domain.

Descriptions and Tags can be applied at the schema level of objects, providing context and categorization at a broader scope. All properties (Description, Tags, Owners and Domain) can be applied at the object level, allowing for detailed metadata management of individual database objects.

Configuration

Configuring Extended Properties

  1. Add to the Ingestion Module Configuration:

    Add the following new setting:

    add_extended_properties: True|False (default: False)

    NOTE: True only if include_descriptions == True.

  2. Add New Setting for Mapping Extended Properties:

    Add the following new setting:

    map_extended_properties: Dict(str: Dict)

    NOTE: This configuration is used only if add_extended_properties == True.

Structure of map_extended_properties

  • map_extended_properties: Specifies how and where to write custom MSSQL extended properties to DataHub.

    Key: str - exact name of the extended properties (e.g., "MS_Description", "OWNER").

    Value: dict - contains descriptions of type, actions, strategy, and additional information. Actions and strategies can vary for different types.

Types
Description

The description type allows you to manage textual descriptions of database objects. Extended properties of this type provide valuable context for data assets.

Actions:
  • overwrite: Overwrites all descriptions. In DataHub, only the last description from the configuration for this type will be visible.

  • append: Adds to the previous description. If this action is used, a delimiter can be added. If the delimiter is absent, the default is used: \n ___ \n.

NOTE: default action: append

Important: Additionally, the first description will always be from ms_description.

NOTE: Actions only have an effect within the configuration. In DataHub, descriptions created via the UI will not be overwritten. However, information from extended properties descriptions can be viewed in the edit description window.

Example Configuration:
  "X_Description_1": {
"type": "description",
"strategy": "append",
"delimiter": "; "
},
"X_Description_2": {
"type": "description",
"strategy": "overwrite"
}

In this example, we are mapping only the value of MSSQL's extended property X_Description_2 to the description of DataHub's dataset.

Owner

The owner type is crucial for identifying the responsible individuals or teams for database objects. This helps in assigning accountability and managing data stewardship.

In MSSQL extended properties, responsible persons should be listed as either users' emails or names (email up to "@") and presented as a comma-separated list.

Requires additional setting ownership_type. Values must be existing DataHub ownership types (e.g., "TECHNICAL_OWNER", "PRODUCER").

Actions:
  • overwrite: Overwrites existing users with the corresponding ownership_type.

  • append: Adds another user to the existing ones with the corresponding ownership_type.

NOTE: default action: append

Important: We check for the presence of these users in DataHub. If they are absent, you will see an error in the logs: “Ingestion error: Absent: {list of users}”.

Example Configuration:
map_extended_properties:
"X_OWNER_1": {
"type": "owner",
"strategy": "append",
"ownership_type": "TECHNICAL_OWNER"
},
"X_OWNER_2": {
"type": "owner",
"strategy": "overwrite",
"ownership_type": "PRODUCER"
}
Tag

The tag type is used for categorizing and labeling data assets. Tags help in organizing and retrieving information based on specific criteria.

In MSSQL extended properties, tags can be recorded as a comma-separated list. Each tag is considered a string enclosed in quotes (between “).

Actions:
  • overwrite: Overwrites the existing tags.
  • append: Adds another tag to the existing ones.

NOTE: default action: append

If a new tag is not present in DataHub, it will be created automatically.

Example Configuration:
map_extended_properties:
"X_TAG_1": {
"type": "tag",
"strategy": "append"
},
"X_TAG_2": {
"type": "tag",
"strategy": "overwrite"
}
Domains

The domains type is used for associating database objects with specific domains. Only the first domain will be recorded, which simplifies domain management.

In MSSQL extended properties, domains can be listed, but only the first domain will be recorded in DataHub.

There is no strategy for domains.

NOTE: A domain added via the UI will be overwritten.

Important: We check for the presence of the domain in DataHub. If it is absent, you will see an error in the logs: “ERROR … Failed to retrieve domain id for domain {domain name}”.

Example Configuration:
map_extended_properties:
X_DOMAIN": {
"type": "domains"
}
Combining Different Types:

You can also combine different types in a single configuration. map_extended_properties:

  "X_Description_1": {
"type": "description",
"strategy": "append",
"delimiter": "; "
},
"X_Description_2": {
"type": "description",
"strategy": "overwrite"
},
"X_OWNER_1": {
"type": "owner",
"strategy": "append",
"ownership_type": "TECHNICAL_OWNER"
},
"X_OWNER_2": {
"type": "owner",
"strategy": "overwrite",
"ownership_type": "PRODUCER"
},
"X_TAG_1": {
"type": "tag",
"strategy": "append"
},
"X_TAG_2": {
"type": "tag",
"strategy": "overwrite"
},
"X_DOMAIN": {
"type": "domains"
}

In this example, various types are mapped in one configuration, demonstrating how to specify different handling strategies for descriptions, owners, tags, and domains.

CLI based Ingestion

Install the Plugin

The mssql source works out of the box with acryl-datahub.

Starter Recipe

Check out the following recipe to get started with ingestion! See below for full configuration options.

For general pointers on writing and running a recipe, see our main recipe guide.

source:
type: mssql
config:
# Coordinates
host_port: localhost:1433
database: DemoDatabase

# Credentials
username: user
password: pass

# Options
# Uncomment if you need to use encryption with pytds
# See https://python-tds.readthedocs.io/en/latest/pytds.html#pytds.connect
# options:
# connect_args:
# cafile: server-ca.pem
# validate_host: true

sink:
# sink configs

#------------------------------------------------------------------------
#Example: using ingestion with ODBC and encryption
#This requires you to have already installed the Microsoft ODBC Driver for SQL Server.
#See https://docs.microsoft.com/en-us/sql/connect/python/pyodbc/step-1-configure-development-environment-for-pyodbc-python-development?view=sql-server-ver15
# ------------------------------------------------------------------------

source:
type: mssql-odbc
config:
# Coordinates
host_port: localhost:1433
database: DemoDatabase

# Credentials
username: admin
password: password

# Options
use_odbc: "True"
uri_args:
driver: "ODBC Driver 17 for SQL Server"
Encrypt: "yes"
TrustServerCertificate: "Yes"
ssl: "True"

sink:
# sink configs

Config Details

Note that a . is used to denote nested fields in the YAML recipe.

FieldDescription
add_extended_properties
boolean
Enable reading extended properties from mssql
Default: False
convert_urns_to_lowercase
boolean
Enable to convert the SQL Server assets urns to lowercase
Default: False
database
string
database (catalog). If set to Null, all databases will be considered for ingestion.
host_port
string
MSSQL host URL.
Default: localhost:1433
include_descriptions
boolean
Include table descriptions information.
Default: True
include_jobs
boolean
Include ingest of MSSQL Jobs. Requires access to the 'msdb' and 'sys' schema.
Default: True
include_lineage
boolean
Enable lineage extraction for stored procedures
Default: True
include_stored_procedures
boolean
Include ingest of stored procedures. Requires access to the 'sys' schema.
Default: True
include_stored_procedures_code
boolean
Include information about object code.
Default: True
include_table_location_lineage
boolean
If the source supports it, include table lineage to the underlying storage location.
Default: True
include_tables
boolean
Whether tables should be ingested.
Default: True
include_view_column_lineage
boolean
Populates column-level lineage for view->view and table->view lineage using DataHub's sql parser. Requires include_view_lineage to be enabled.
Default: True
include_view_lineage
boolean
Populates view->view and table->view lineage using DataHub's sql parser.
Default: True
include_views
boolean
Whether views should be ingested.
Default: True
incremental_lineage
boolean
When enabled, emits lineage as incremental to existing lineage already in DataHub. When disabled, re-states lineage on each run.
Default: False
map_extended_properties
map(str,object)
options
object
Any options specified here will be passed to SQLAlchemy.create_engine as kwargs. To set connection arguments in the URL, specify them under connect_args.
password
string(password)
password
platform_instance
string
The instance of the platform that all assets produced by this recipe belong to. This should be unique within the platform. See https://datahubproject.io/docs/platform-instances/ for more details.
sqlalchemy_uri
string
URI of database to connect to. See https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls. Takes precedence over other connection parameters.
uri_args
map(str,string)
use_file_backed_cache
boolean
Whether to use a file backed cache for the view definitions.
Default: True
use_odbc
boolean
See https://docs.sqlalchemy.org/en/14/dialects/mssql.html#module-sqlalchemy.dialects.mssql.pyodbc.
Default: False
username
string
username
env
string
The environment that all assets produced by this connector belong to
Default: PROD
classification
ClassificationConfig
For details, refer to Classification.
Default: {'enabled': False, 'sample_size': 100, 'max_worker...
classification.enabled
boolean
Whether classification should be used to auto-detect glossary terms
Default: False
classification.info_type_to_term
map(str,string)
classification.max_workers
integer
Number of worker processes to use for classification. Set to 1 to disable.
Default: 4
classification.sample_size
integer
Number of sample values used for classification.
Default: 100
classification.classifiers
array
Classifiers to use to auto-detect glossary terms. If more than one classifier, infotype predictions from the classifier defined later in sequence take precedance.
Default: [{'type': 'datahub', 'config': None}]
classification.classifiers.DynamicTypedClassifierConfig
DynamicTypedClassifierConfig
classification.classifiers.DynamicTypedClassifierConfig.type 
string
The type of the classifier to use. For DataHub, use datahub
classification.classifiers.DynamicTypedClassifierConfig.config
object
The configuration required for initializing the classifier. If not specified, uses defaults for classifer type.
classification.column_pattern
AllowDenyPattern
Regex patterns to filter columns for classification. This is used in combination with other patterns in parent config. Specify regex to match the column name in database.schema.table.column format.
Default: {'allow': ['.*'], 'deny': [], 'ignoreCase': True}
classification.column_pattern.ignoreCase
boolean
Whether to ignore case sensitivity during pattern matching.
Default: True
classification.column_pattern.allow
array
List of regex patterns to include in ingestion
Default: ['.*']
classification.column_pattern.allow.string
string
classification.column_pattern.deny
array
List of regex patterns to exclude from ingestion.
Default: []
classification.column_pattern.deny.string
string
classification.table_pattern
AllowDenyPattern
Regex patterns to filter tables for classification. This is used in combination with other patterns in parent config. Specify regex to match the entire table name in database.schema.table format. e.g. to match all tables starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'
Default: {'allow': ['.*'], 'deny': [], 'ignoreCase': True}
classification.table_pattern.ignoreCase
boolean
Whether to ignore case sensitivity during pattern matching.
Default: True
classification.table_pattern.allow
array
List of regex patterns to include in ingestion
Default: ['.*']
classification.table_pattern.allow.string
string
classification.table_pattern.deny
array
List of regex patterns to exclude from ingestion.
Default: []
classification.table_pattern.deny.string
string
database_pattern
AllowDenyPattern
Regex patterns for databases to filter in ingestion.
Default: {'allow': ['.*'], 'deny': [], 'ignoreCase': True}
database_pattern.ignoreCase
boolean
Whether to ignore case sensitivity during pattern matching.
Default: True
database_pattern.allow
array
List of regex patterns to include in ingestion
Default: ['.*']
database_pattern.allow.string
string
database_pattern.deny
array
List of regex patterns to exclude from ingestion.
Default: []
database_pattern.deny.string
string
domain
map(str,AllowDenyPattern)
A class to store allow deny regexes
domain.key.allow
array
List of regex patterns to include in ingestion
Default: ['.*']
domain.key.allow.string
string
domain.key.ignoreCase
boolean
Whether to ignore case sensitivity during pattern matching.
Default: True
domain.key.deny
array
List of regex patterns to exclude from ingestion.
Default: []
domain.key.deny.string
string
procedure_pattern
AllowDenyPattern
Regex patterns for stored procedures to filter in ingestion.Specify regex to match the entire procedure name in database.schema.procedure_name format. e.g. to match all procedures starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'
Default: {'allow': ['.*'], 'deny': [], 'ignoreCase': True}
procedure_pattern.ignoreCase
boolean
Whether to ignore case sensitivity during pattern matching.
Default: True
procedure_pattern.allow
array
List of regex patterns to include in ingestion
Default: ['.*']
procedure_pattern.allow.string
string
procedure_pattern.deny
array
List of regex patterns to exclude from ingestion.
Default: []
procedure_pattern.deny.string
string
profile_pattern
AllowDenyPattern
Regex patterns to filter tables (or specific columns) for profiling during ingestion. Note that only tables allowed by the table_pattern will be considered.
Default: {'allow': ['.*'], 'deny': [], 'ignoreCase': True}
profile_pattern.ignoreCase
boolean
Whether to ignore case sensitivity during pattern matching.
Default: True
profile_pattern.allow
array
List of regex patterns to include in ingestion
Default: ['.*']
profile_pattern.allow.string
string
profile_pattern.deny
array
List of regex patterns to exclude from ingestion.
Default: []
profile_pattern.deny.string
string
schema_pattern
AllowDenyPattern
Regex patterns for schemas to filter in ingestion. Specify regex to only match the schema name. e.g. to match all tables in schema analytics, use the regex 'analytics'
Default: {'allow': ['.*'], 'deny': [], 'ignoreCase': True}
schema_pattern.ignoreCase
boolean
Whether to ignore case sensitivity during pattern matching.
Default: True
schema_pattern.allow
array
List of regex patterns to include in ingestion
Default: ['.*']
schema_pattern.allow.string
string
schema_pattern.deny
array
List of regex patterns to exclude from ingestion.
Default: []
schema_pattern.deny.string
string
table_pattern
AllowDenyPattern
Regex patterns for tables to filter in ingestion. Specify regex to match the entire table name in database.schema.table format. e.g. to match all tables starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'
Default: {'allow': ['.*'], 'deny': [], 'ignoreCase': True}
table_pattern.ignoreCase
boolean
Whether to ignore case sensitivity during pattern matching.
Default: True
table_pattern.allow
array
List of regex patterns to include in ingestion
Default: ['.*']
table_pattern.allow.string
string
table_pattern.deny
array
List of regex patterns to exclude from ingestion.
Default: []
table_pattern.deny.string
string
view_pattern
AllowDenyPattern
Regex patterns for views to filter in ingestion. Note: Defaults to table_pattern if not specified. Specify regex to match the entire view name in database.schema.view format. e.g. to match all views starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'
Default: {'allow': ['.*'], 'deny': [], 'ignoreCase': True}
view_pattern.ignoreCase
boolean
Whether to ignore case sensitivity during pattern matching.
Default: True
view_pattern.allow
array
List of regex patterns to include in ingestion
Default: ['.*']
view_pattern.allow.string
string
view_pattern.deny
array
List of regex patterns to exclude from ingestion.
Default: []
view_pattern.deny.string
string
profiling
GEProfilingConfig
Default: {'enabled': False, 'operation_config': {'lower_fre...
profiling.catch_exceptions
boolean
Default: True
profiling.enabled
boolean
Whether profiling should be done.
Default: False
profiling.field_sample_values_limit
integer
Upper limit for number of sample values to collect for all columns.
Default: 20
profiling.include_field_distinct_count
boolean
Whether to profile for the number of distinct values for each column.
Default: True
profiling.include_field_distinct_value_frequencies
boolean
Whether to profile for distinct value frequencies.
Default: False
profiling.include_field_histogram
boolean
Whether to profile for the histogram for numeric fields.
Default: False
profiling.include_field_max_value
boolean
Whether to profile for the max value of numeric columns.
Default: True
profiling.include_field_mean_value
boolean
Whether to profile for the mean value of numeric columns.
Default: True
profiling.include_field_median_value
boolean
Whether to profile for the median value of numeric columns.
Default: True
profiling.include_field_min_value
boolean
Whether to profile for the min value of numeric columns.
Default: True
profiling.include_field_null_count
boolean
Whether to profile for the number of nulls for each column.
Default: True
profiling.include_field_quantiles
boolean
Whether to profile for the quantiles of numeric columns.
Default: False
profiling.include_field_sample_values
boolean
Whether to profile for the sample values for all columns.
Default: True
profiling.include_field_stddev_value
boolean
Whether to profile for the standard deviation of numeric columns.
Default: True
profiling.limit
integer
Max number of documents to profile. By default, profiles all documents.
profiling.max_number_of_fields_to_profile
integer
A positive integer that specifies the maximum number of columns to profile for any table. None implies all columns. The cost of profiling goes up significantly as the number of columns to profile goes up.
profiling.max_workers
integer
Number of worker threads to use for profiling. Set to 1 to disable.
Default: 20
profiling.offset
integer
Offset in documents to profile. By default, uses no offset.
profiling.partition_datetime
string(date-time)
If specified, profile only the partition which matches this datetime. If not specified, profile the latest partition. Only Bigquery supports this.
profiling.partition_profiling_enabled
boolean
Whether to profile partitioned tables. Only BigQuery and Aws Athena supports this. If enabled, latest partition data is used for profiling.
Default: True
profiling.profile_external_tables
boolean
Whether to profile external tables. Only Snowflake and Redshift supports this.
Default: False
profiling.profile_if_updated_since_days
number
Profile table only if it has been updated since these many number of days. If set to null, no constraint of last modified time for tables to profile. Supported only in snowflake and BigQuery.
profiling.profile_nested_fields
boolean
Whether to profile complex types like structs, arrays and maps.
Default: False
profiling.profile_table_level_only
boolean
Whether to perform profiling at table-level only, or include column-level profiling as well.
Default: False
profiling.profile_table_row_count_estimate_only
boolean
Use an approximate query for row count. This will be much faster but slightly less accurate. Only supported for Postgres and MySQL.
Default: False
profiling.profile_table_row_limit
integer
Profile tables only if their row count is less than specified count. If set to null, no limit on the row count of tables to profile. Supported only in snowflake and BigQuerySupported for oracle based on gathered stats.
Default: 5000000
profiling.profile_table_size_limit
integer
Profile tables only if their size is less than specified GBs. If set to null, no limit on the size of tables to profile. Supported only in snowflake and BigQuerySupported for oracle based on calculated size from gathered stats.
Default: 5
profiling.query_combiner_enabled
boolean
This feature is still experimental and can be disabled if it causes issues. Reduces the total number of queries issued and speeds up profiling by dynamically combining SQL queries where possible.
Default: True
profiling.report_dropped_profiles
boolean
Whether to report datasets or dataset columns which were not profiled. Set to True for debugging purposes.
Default: False
profiling.sample_size
integer
Number of rows to be sampled from table for column level profiling.Applicable only if use_sampling is set to True.
Default: 10000
profiling.turn_off_expensive_profiling_metrics
boolean
Whether to turn off expensive profiling or not. This turns off profiling for quantiles, distinct_value_frequencies, histogram & sample_values. This also limits maximum number of fields being profiled to 10.
Default: False
profiling.use_sampling
boolean
Whether to profile column level stats on sample of table. Only BigQuery and Snowflake support this. If enabled, profiling is done on rows sampled from table. Sampling is not done for smaller tables.
Default: True
profiling.operation_config
OperationConfig
Experimental feature. To specify operation configs.
profiling.operation_config.lower_freq_profile_enabled
boolean
Whether to do profiling at lower freq or not. This does not do any scheduling just adds additional checks to when not to run profiling.
Default: False
profiling.operation_config.profile_date_of_month
integer
Number between 1 to 31 for date of month (both inclusive). If not specified, defaults to Nothing and this field does not take affect.
profiling.operation_config.profile_day_of_week
integer
Number between 0 to 6 for day of week (both inclusive). 0 is Monday and 6 is Sunday. If not specified, defaults to Nothing and this field does not take affect.
profiling.tags_to_ignore_sampling
array
Fixed list of tags to ignore sampling. If not specified, tables will be sampled based on use_sampling.
profiling.tags_to_ignore_sampling.string
string
stateful_ingestion
StatefulStaleMetadataRemovalConfig
Base specialized config for Stateful Ingestion with stale metadata removal capability.
stateful_ingestion.enabled
boolean
Whether or not to enable stateful ingest. Default: True if a pipeline_name is set and either a datahub-rest sink or datahub_api is specified, otherwise False
Default: False
stateful_ingestion.remove_stale_metadata
boolean
Soft-deletes the entities present in the last successful run but missing in the current run with stateful_ingestion enabled.
Default: True

Code Coordinates

  • Class Name: datahub.ingestion.source.sql.mssql.source.SQLServerSource
  • Browse on GitHub

Questions

If you've got any questions on configuring ingestion for Microsoft SQL Server, feel free to ping us on our Slack.